首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5986篇
  免费   206篇
  国内免费   32篇
化学   4478篇
晶体学   52篇
力学   82篇
数学   376篇
物理学   1236篇
  2023年   25篇
  2022年   24篇
  2021年   53篇
  2020年   69篇
  2019年   101篇
  2018年   58篇
  2017年   51篇
  2016年   117篇
  2015年   107篇
  2014年   143篇
  2013年   318篇
  2012年   346篇
  2011年   421篇
  2010年   221篇
  2009年   254篇
  2008年   422篇
  2007年   419篇
  2006年   455篇
  2005年   407篇
  2004年   371篇
  2003年   295篇
  2002年   234篇
  2001年   82篇
  2000年   56篇
  1999年   54篇
  1998年   44篇
  1997年   61篇
  1996年   64篇
  1995年   49篇
  1994年   43篇
  1993年   49篇
  1992年   36篇
  1991年   45篇
  1990年   25篇
  1989年   24篇
  1988年   33篇
  1987年   33篇
  1986年   48篇
  1985年   70篇
  1984年   61篇
  1983年   24篇
  1982年   57篇
  1981年   65篇
  1980年   49篇
  1979年   44篇
  1978年   37篇
  1977年   27篇
  1976年   30篇
  1975年   24篇
  1973年   25篇
排序方式: 共有6224条查询结果,搜索用时 156 毫秒
11.
Catalysis by chiral weakly‐coordinating anions (WCAs) remains underdeveloped due to the lack of a molecular design strategy for exploiting their characteristics, such as the non‐nucleophilic nature. Here, we report the development of a chiral borate ion comprising an O,N,N,O‐tetradentate backbone, which ensures hitherto unattainable structural robustness. Upon pairing with a proton, the hydrogen borate acts as an effective catalyst for the asymmetric Prins‐type cyclization of vinyl ethers, providing access to structurally and stereochemically defined dihydropyrans. The key to selectivity control is the distinct ability of the borate ion to discriminate the prochiral faces of the acyclic oxonium ion intermediate and dictate the regiochemical outcome. We anticipate that this study paves the way for exploring the untapped potential of WCA catalysis for selective chemical synthesis.  相似文献   
12.
A tungsten silylyne complex having a W≡Si triple bond reacted with two molecules of aldehydes at room temperature to give W−Si−O−C four-membered metallacycles by [2+2] cycloaddition and subsequent formyl hydrogen transfer from one aldehyde molecule to another. Upon heating to 70 °C, the four-membered metallacycles underwent metathesis-like fragmentation cleanly to afford carbyne complexes and “silanoic esters,” in a manner similar to that of metallacyclobutadiene, an intermediate of alkyne metathesis reactions, and dimerization of the latter products gave 1,3-cyclodisiloxanes. The “silanoic ester” was also trapped by pivalaldehyde to give a [2+2] cycloaddition product in high yield.  相似文献   
13.
One new compound, 12-epi-9-deacetoxyxenicin (1) along with a hydroperoxide product, 12-epi-9-deacetoxy-8-hydroperoxyxenicin (2) and two known sesquiterpenoids (34) were isolated from a population of Bornean soft coral Xenia sp. The structures of these secondary metabolites were elucidated based on their spectroscopic data. Compounds 1 and 2 showed cytotoxic activity against ATL cell line, S1T. In addition, compound 3 exhibited hyphal inhibition of Lagenidium thermophilum.  相似文献   
14.
Shimalactones A and B are neuritogenic polyketides possessing characteristic oxabicyclo[2.2.1]heptane and bicyclo[4.2.0]octadiene ring systems that are produced by the marine fungus Emericella variecolor GF10. We identified a candidate biosynthetic gene cluster and conducted heterologous expression analysis. Expression of ShmA polyketide synthase in Aspergillus oryzae resulted in the production of preshimalactone. Aspergillus oryzae and Saccharomyces cerevisiae transformants expressing ShmA and ShmB produced shimalactones A and B, thus suggesting that the double bicyclo-ring formation reactions proceed non-enzymatically from preshimalactone epoxide. DFT calculations strongly support the idea that oxabicyclo-ring formation and 8π-6π electrocyclization proceed spontaneously after opening of the preshimalactone epoxide ring through protonation. We confirmed the formation of preshimalactone epoxide in vitro, followed by its non-enzymatic conversion to shimalactones in the dark.  相似文献   
15.
Disilane- and disiloxane-bridged bipyridyls ( DSBPy and DSOBPy ) were prepared and their optical properties were investigated in comparison with those of previously reported monosilane- and monogermane-bridged counterparts. The UV–visible absorption and photoluminescence bands of DSBPy and DSOBPy were blue-shifted as a result of elongation of the bridging units from monosilane and monogermane to disilane and disiloxane, likely due to the enhanced twisting of the bipyridyl units. Phosphorescent complexes DSBPy–Cu and DSOBPy–Cu were prepared by the interaction of DSBPy and DSOBPy with Cu2I2(PPh3)2. X-ray diffraction studies of their single-crystal structures revealed polymeric structures composed of repeat units of DSBPy or DSOBPy and [CuII(PPh3)]2. Organic light-emitting diodes with the ITO/PEDOT:PSS/ DSBPy–Cu or DSOBPy–Cu :PCTSQ/TAZ/Al structure were fabricated to examine the applications of the complexes as electroluminescent materials. The devices emitted yellow light with emission maxima at approximately 600 nm, and maximal luminance reached 120 and 190 cd m−2 for devices based on DSBPy–Cu and DSOBPy–Cu , respectively. The performance of the DSOBPy–Cu -based device was improved by using TAZ as the dopant of the emissive layer, and luminance was increased to 390 cd m−2.  相似文献   
16.
Aggregation-induced emission (AIE) is a fascinating phenomenon because of the applications of luminescent materials in the aggregated state, which exploit the large structural changes of the molecules in the excited state. Recently, it was reported that triphenylphosphane derivatives show AIE behavior in which they undergo potentially large structural changes in the excited state. Inspired by this report, photoinduced pyramidal inversion behavior of phosphanes was investigated. In photochemical experiments, the prepared P-stereogenic phosphanes exhibited photoracemization in dilute solution, and a negative correlation was observed between the photoracemization and the AIE phenomenon. Theoretical computations revealed that the inversion barrier in the excited state was much smaller than that in the ground state. This is the first report on the photoinduced pyramidal inversion behavior of phosphanes, which will provide new and unexplored applications.  相似文献   
17.
DNA minicircles exist in biological contexts, such as kinetoplast DNA, and are promising components for creating functional nanodevices. They have been used to mimic the topological features of nucleosomal DNA and to probe DNA-protein interactions such as HIV-1 and PFV integrases, and DNA gyrase. Here, we synthesized the topologically-interlocked minicircle rotaxane and catenane inside a frame-shaped DNA origami. These minicircles are 183 bp in length, constitute six individual single-stranded DNAs that are ligated to realize duplex interlocking, and adopt temporary base pairing of single strands for interlocking. To probe the DNA-protein interactions, restriction reactions were carried out on DNAs with different topologies such as free linear duplex or duplex constrained inside origami and free or topologically-interlocked minicircles. Except the free linear duplex, all tested structures were resistant to restriction digestion, indicating that the topological features of DNA, such as flexibility, curvature, and groove orientation, play a major role in DNA-protein interactions.  相似文献   
18.
Tri- and tetra-fluorinated [7]helicenes are photolabile and undergo a double fluorine atom transfer. Herein, we show that the transferred product further undergoes a skeletal transformation on silica gel. The transformation begins with activation of the allylic C−F bond on the silanol surface. Then, the resulting carbocation readily undergoes a regioselective nucleophilic aromatic substitution with water, depending on the position of the fluorine substituents. Hexafluoro-2-propanol also activated the allylic C−F bond and acted as a nucleophile. These findings support the generation of a highly reactive cationic electrophilic intermediate in the successive transformations involving fluorine atoms.  相似文献   
19.
Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co−pyNDI, Ni−pyNDI, and Zn−pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn−pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.  相似文献   
20.
Herein, we report a copper-catalyzed stereospecific fluorination involving CsF and α-bromocarboxamides as tertiary alkyl sources that, unlike traditional stereospecific routes involving stereoinversive SN2 reactions, proceeds with retention of stereochemistry. The developed stereospecific Cu-catalyzed reaction is among the most efficient methods for synthesizing fluorinated molecules that possess highly congested stereogenic carbon centers. Mechanistic studies revealed that the combined reactivity of CuF2 and Cs salt is essential for completing the catalytic cycle. Our catalytic system underwent fluorination exclusively with tertiary alkyl bromides and did not react with primary alkyl bromides, indicating that this stereospecific fluorination methodology is suitable for synthesizing fluorinated building blocks possessing stereo-defined F-containing tertiary carbon stereogenic center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号